MTH405 – Elementary Topics in Pure Mathematics


Convergent and Divergent sequences(Definition examples and theorem) Lecture slide
Convergent and Divergent sequences(Definition examples and theorem) Lecture slide.png
1685.22 KBpngFeb 19, 2019
 Bounded Sequence(lecture slide).pngBounded Sequence(lecture slide)176.8 KBpngFeb 19, 2019
 07-Algebra of Convergence Sequences in Metric Spaces.mp4Algebra of Convergence Sequences in Metric Spaces7621.8 KBmp4Feb 19, 2019
 06-Convergence vs Boundedness in Metric Space.mp4Convergence vs Boundedness in Metric Space9063.71 KBmp4Feb 19, 2019
 05-Uniqueness of Limit of Convergent Sequence in a Metric Space.mp4Uniqueness of Limit of Convergent Sequence in a Metric Space4060.65 KBmp4Feb 19, 2019
 04-Divergent Sequence and Examples.mp4Divergent Sequence and Examples6927.06 KBmp4Feb 19, 2019
 03-Convergent Sequence (Examples).mp4Convergent Sequence (Examples)9110.31 KBmp4Feb 19, 2019
 02-Convergent Sequence(Definition).mp4Convergent Sequence(Definition)11842.78 KBmp4Feb 19, 2019
 01-Bounded Sequence.mp4Bounded Sequence8698.16 KBmp4Feb 19, 2019
 2-Usual metric in R2.mp4Usual metric in R217520.7 KBmp4Jan 14, 2019
 Metric Spaces(slides).rarMetric Spaces(slides)28859.16 KBrarDec 26, 2018
 Lecture-1(Metric spaces).pngLecture-1(Metric spaces)2006.81 KBpngDec 26, 2018
 Some important metrics and distance functions.mp4Some important metrics and distance functions7858.75 KBmp4Dec 26, 2018
 Introduction and Definition.mp4Introduction and Definition(Metric Space)8574.91 KBmp4Dec 26, 2018
 20 – 3.mp420 – 33226.64 KBmp4Nov 29, 2018
 20 – 2.mp420 – 22380.55 KBmp4Nov 29, 2018
 20 – 1.mp420 – 12978.79 KBmp4Nov 29, 2018
 Slides of lecture 20.rarSlides of lecture 2055.02 KBrarNov 29, 2018
 Slides Lecture 21.rarSlides Lecture 21198.79 KBrarNov 27, 2018
 Slides lecture 22.rarSlides lecture 22281.56 KBrarNov 27, 2018
 16 – 5 Example 5.mp416 – 5 Example 55265.46 KBmp4Nov 27, 2018
 16 – 4 Example 4.mp416 – 4 Example 43995.46 KBmp4Nov 27, 2018
 16 – 3 Example 3.mp416 – 3 Example 34535.61 KBmp4Nov 27, 2018
 16 – 2 Example 2.mp416 – 2 Example 24252.82 KBmp4Nov 27, 2018
 16 – 1 Example 1.mp416 – 1 Example 14587.37 KBmp4Nov 27, 2018
 Slides lecture 16.rarSlides lecture 1695.17 KBrarNov 27, 2018
 Slides lecture 19.rarSlides lecture 19774.84 KBrarNov 26, 2018
 Slides lecture 18.rarSlides lecture 18294.15 KBrarNov 26, 2018
 Slides lecture 17.rarSlides lecture 17288.65 KBrarNov 26, 2018
 Slides lecture 15.rarSlides lecture 15172.02 KBrarNov 20, 2018
 Slides lecture 14.rarSlides lecture 14211 KBrarNov 20, 2018
 Slides lecture 13.rarSlides lecture 13253.48 KBrarNov 20, 2018
 Slides lecture 11.rarSlides lecture 11142.05 KBrarNov 20, 2018
 Slides of lecture 10.rarSlides of lecture 10315.21 KBrarNov 20, 2018
Slides of lecture 9.rarSlides of lecture 9161.02 KBrarNov 20, 2018
 Slides of lecture 8.rarSlides of lecture 8479.59 KBrarNov 20, 2018
 Slides of lecture 7.rarSlides of lecture 7506.6 KBrarNov 20, 2018
 1-Sequences(Definition, examples and Monotonicity).mp4Sequences(Definition, examples and Monotonicity)11713.08 KBmp4Nov 20, 2018
 Interior, Exterior and Boundary of a Set in Metric Space.mp4Interior, Exterior and Boundary of a Set in Metric Space18067.48 KBmp4Nov 20, 2018
 3-Closure as a smallest Closed Superset.mp43-Closure as a smallest Closed Superset5317.17 KBmp4Nov 19, 2018
 2-Set Theoretic Operations in Closures.mp42-Set Theoretic Operations in Closures11242.51 KBmp4Nov 19, 2018
 1-Closeness vs closure Theorem.mp41-Closeness vs closure Theorem7632.77 KBmp4Nov 19, 2018
 02-Closure of an open interval.mp402-Closure of an open interval1685.37 KBmp4Nov 19, 2018
 01-Closure of Harmonic Sequence.mp401-Closure of Harmonic Sequence1869.41 KBmp4Nov 19, 2018
 00-Closure(Definition and example).mp400-Closure(Definition and example)3636.67 KBmp4Nov 19, 2018
 02-Closed vs Complement Theorem.mp402-Closed vs Complement Theorem18228.59 KBmp4Nov 19, 2018
 01-Closeness of Finite subset in Metric Space.mp401-Closeness of Finite subset in Metric Space6071.7 KBmp4Nov 19, 2018
 00-Finite union of closed sets is closed.mp400-Finite union of closed sets is closed9121.29 KBmp4Nov 19, 2018
 02-Closed Sets in Discrete metric Space.mp402-Closed Sets in Discrete metric Space8470.59 KBmp4Nov 19, 2018
 01-Closed interval in R.mp401-Closed interval in R13398.01 KBmp4Nov 19, 2018
 00-Closed Sets(Definition and examples).mp400-Closed Sets(Definition and examples)7573.15 KBmp4Nov 19, 2018
 02-Set Theoretic Operations of Derived Sets.mp402-Set Theoretic Operations of Derived Sets10476.04 KBmp4Nov 19, 2018
 01-Derived set in a discrete metric space.mp401-Derived set in a discrete metric space9702.45 KBmp4Nov 19, 2018
 00-Limit point of a Finite set.mp400-Limit point of a Finite set12626.4 KBmp4Nov 19, 2018
 04Derived Set of Rationals and Irrationals.mp404-Derived Set of Rationals and Irrationals10570.55 KBmp4Nov 19, 2018
 03-Derived Set(Definition and example).mp403-Derived Set(Definition and example)6430.68 KBmp4Nov 19, 2018
 02-Limit point of {1by n}.mp402-Limit point of {1by n}8460.4 KBmp4Nov 19, 2018
 01-Limit point for Z(set of integers).mp401-Limit point for Z(set of integers)4821.7 KBmp4Nov 19, 2018
 00-Limit point (Definition and example from R).mp400-Limit point (Definition and example from R)8425.02 KBmp4Nov 19, 2018
 01-Arbitrary Union of Nghds.flv01-Arbitrary Union of Nghds22376.34 KBflvNov 19, 2018
 00-Finite Intersection of Nghds.mp400-Finite Intersection of Nghds7327.82 KBmp4Nov 19, 2018
 02-Subset is open iff it is nghd of each of its points.mp402-Subset is open iff it is nghd of each of its points10578.07 KBmp4Nov 19, 2018
 01-Metric Space as Nghd of each of its points.mp401-Metric Space as Nghd of each of its points2279.11 KBmp4Nov 19, 2018
 00-Nghd of a Point.mp400-Nghd of a Point7107.78 KBmp4Nov 19, 2018
 06-Land-Mark Theorem for Open sets(Intersection)-2.mp406-Land-Mark Theorem for Open sets(Intersection)-24514.87 KBmp4Nov 19, 2018
 05-Land-Mark Theorem for Open sets(Intersection)-1.mp405-Land-Mark Theorem for Open sets(Intersection)-15715 KBmp4Nov 19, 2018
 04-Land-Mark Theorem for Open sets(Union).mp404-Land-Mark Theorem for Open sets(Union)13750.17 KBmp4Nov 19, 2018
 03-Open set in Discrete Metric.mp403-Open set in Discrete Metric6002.78 KBmp4Nov 19, 2018
 02-Open Interval as an open set in R.mp402-Open Interval as an open set in R4541.24 KBmp4Nov 19, 2018
 01-Hausdorff Property.mp401-Hausdorff Property8759.58 KBmp4Nov 19, 2018
 00-Complement of Finite Set is Open.mp400-Complement of Finite Set is Open10011.69 KBmp4Nov 19, 2018
 04-Open Sphere theorem in any (X,d) with counter example(modification).mp404-Open Sphere theorem in any (X,d) with counter example(modification)3016.6 KBmp4Nov 19, 2018
 03-Open Sphere theorem in any (X,d) with counter example.mp403-Open Sphere theorem in any (X,d) with counter example14214.54 KBmp4Nov 19, 2018
 02-Clopen Theorem.mp402-Clopen Theorem8759.54 KBmp4Nov 19, 2018
 01-Open set in R2 under usual metric.mp401-Open set in R2 under usual metric13774.47 KBmp4Nov 19, 2018
 00-Open sets (definition and example in R).mp400-Open sets (definition and example in R)12676.42 KBmp4Nov 19, 2018
 08-Open Spere in c[a,b]-2.mp408-Open Sphere in c[a,b]-23883.59 KBmp4Nov 19, 2018
 07-Open Spere in c[a,b]-1.mp407-Open Spere in c[a,b]-16713.21 KBmp4Nov 19, 2018
 06-Open Sphere in Discrete Metric Space (last step explanation).mp406-Open Sphere in Discrete Metric Space (last step explanation)3009.78 KBmp4Nov 19, 2018
 05-Open Sphere in Discrete Metric Space.mp405-Open Sphere in Discrete Metric Space10929.49 KBmp4Nov 19, 2018
 04-Open Spheres in R2(Chebyshev Metric).mp404-Open Spheres in R2(Chebyshev Metric)4318.01 KBmp4Nov 19, 2018
 03-Open Spheres in R2(Euclidean and Taxi-Cab).mp403-Open Spheres in R2(Euclidean and Taxi-Cab)7935.03 KBmp4Nov 19, 2018
 02-Open Shpere on R(other metric).mp402-Open Sphere on R(other metric)4304.58 KBmp4Nov 19, 2018
 01-Open Shpere on R under Euclidean Metric.mp401-Open sphere on R under Euclidean Metric5873.47 KBmp4Nov 19, 2018

00-Open and Closed Spheres
00-Open and Closed Spheres.mp4
5633.65 KBmp4Nov 19, 2018
 02-Bounded Metric Space.mp402-Bounded Metric Space12045.04 KBmp4Nov 19, 2018
 01-Applications of Minkoski Inequality.mp401-Applications of Minkoski Inequality11020.35 KBmp4Nov 19, 2018
 00-Applications of Cauch Schwarz inequality.mp400-Applications of CauchY Schwarz inequality3617.96 KBmp4Nov 19, 2018
 01-Minkoski Inequality.mp4Minkoski Inequality8968.65 KBmp4Nov 15, 2018
 00-Cauchy-Schwarz Inequality.mp4Cauchy-Schwarz Inequality11584.61 KBmp4Nov 15, 2018
 02-L1 Space(02).mp402-L1 Space(02)9064.43 KBmp4Nov 15, 2018
 01-L1 Space(01).mp401-L1 Space(01)9182.93 KBmp4Nov 15, 2018
 00-Important Inequality in (X,d).mp400-Important Inequality in (X,d)7364.12 KBmp4Nov 15, 2018
 05-Counter example-4.mp405-Counter example-44028.47 KBmp4Nov 15, 2018
 04-Counter example-3.mp404-Counter example-37118.98 KBmp4Nov 15, 2018
 03-min{1,d(x,y)}-2.mp403-min{1,d(x,y)}-217696.87 KBmp4Nov 15, 2018
 02-min{1,d(x,y)}-1.mp402-min{1,d(x,y)}-17017.06 KBmp4Nov 15, 2018
 01-uniform metric-02.mp401-uniform metric-0212284.73 KBmp4Nov 15, 2018
 00-uniform metric-01.mp4uniform metric-0110829.57 KBmp4Nov 15, 2018
 08-Counter example-3.mp4Counter example-35484.8 KBmp4Nov 15, 2018
 07-Counter example-2.mp4Counter example-24876.84 KBmp4Nov 15, 2018
 06-Counter example-1.mp406-Counter example-13069.61 KBmp4Nov 15, 2018
 05-c[a,b] as a metric space-2.mp4c[a,b] as a metric space-213595.31 KBmp4Nov 15, 2018
 04-c[a,b] as a metric space-1.mp4c[a,b] as a metric space-18843.75 KBmp4Nov 15, 2018
 03-Chebyshev Metric(in Rn-2).mp4Chebyshev Metric(in Rn-2)15094.75 KBmp4Nov 15, 2018
 02-Chebyshev Metric(in Rn-1).mp4Chebyshev Metric(in Rn-1)7885.74 KBmp4Nov 15, 2018
 01-Chebyshev Metric(in R2-2).mp4Chebyshev Metric(in R2-2)12717.66 KBmp4Nov 15, 2018
 00-Chebyshev Metric(in R2-1).mp4Chebyshev Metric(in R2-1)8197.11 KBmp4Nov 15, 2018
 03-Metric interms of defined metrics.mp4Metric interms of defined metrics15276.74 KBmp4Nov 15, 2018
 02-absolute and radical metric.mp4absolute and radical metric7575.39 KBmp4Nov 15, 2018
 01-British Rail distance function.mp4British Rail distance function3505.53 KBmp4Nov 15, 2018
 00-Metric on R-{0}.mp4Metric on R-{0}6157.53 KBmp4Nov 15, 2018
 04-taxicab in Rn-2.mp4taxicab in Rn-26521.77 KBmp4Nov 15, 2018
 03-taxicab in Rn-1.mp4taxicab in Rn-110594.22 KBmp4Nov 15, 2018
 02-Taxicab-2.mp402-Taxicab-29720.6 KBmp4Nov 15, 2018
 01-Taxicab-1.mp4Taxicab-14726.85 KBmp4Nov 15, 2018
 00-Discrete metric Space.mp4Discrete metric Space12213.74 KBmp4Nov 15, 2018
 1-Usual Metric space(Triangle Property).mp4Usual Metric space(Triangle Property)3591.27 KBmp4Nov 15, 2018
 1-Usual Metric space.wmvUsual Metric space29873.49 KBwmvNov 15, 2018
 Slides Chapter 6.rarSlides Chapter 6448.43 KBrarNov 13, 2018
 Slides Chapter 4.rarSlides Chapter 4198.97 KBrarNov 13, 2018
 Slides Chapter 5.rarSlides Chapter 5429.28 KBrarNov 13, 2018
 Slides Chapter 3.rarSlides Chapter 3321.32 KBrarNov 13, 2018
 Slides Chapter 2.rarSlides Chapter 21459.05 KBrarNov 13, 2018
 Slides Chapter 1.rarSlides Chapter 1147.79 KBrarNov 13, 2018
 Correction in theorem 3 – line 3, 4.bmpCorrection in theorem 3 – line 3, 410097.29 KBbmpNov 12, 2018
 7-5 Theorem 3 ( 15 – 24 ).mp47-5 Theorem 3 ( 15 – 24 )39359.23 KBmp4Nov 12, 2018
 7-4 Theorem 2 ( 06 – 31 ).mp47-4 Theorem 2 ( 06 – 31 )16043.71 KBmp4Nov 12, 2018
 Slides Lecture No 12.rarSlides Lecture No 12105.6 KBrarNov 08, 2018
 12 – 6 Example 6.mp412 – 6 Example 65111.73 KBmp4Nov 08, 2018
 12 – 5 Example 5.mp412 – 5 Example 56058.96 KBmp4Nov 08, 2018
 12 – 4 Example 4.mp412 – 4 Example 45339 KBmp4Nov 08, 2018
 12 – 3 Example 3.mp412 – 3 Example 37072.58 KBmp4Nov 08, 2018
 12 – 2 Example 2.mp412 – 2 Example 28918.42 KBmp4Nov 08, 2018

12 – 1 Example 1
12 – 1 Example 1.mp4
7738.5 KBmp4Nov 08, 2018
 22 – 5 Example 9 ( 09 – 47 ).mp422 – 5 Example 925281.47 KBmp4Oct 24, 2018
 22 – 4 Example 8 ( 03 – 58 ).mp422 – 4 Example 89586.33 KBmp4Oct 24, 2018
 22 – 3 Example 7 ( 11 – 37 ).mp422 – 3 Example 731918.15 KBmp4Oct 24, 2018
 22 – 2 Example 6 ( 05 – 23 ).mp422 – 2 Example 613741.29 KBmp4Oct 24, 2018
 22 – 1 Example 5 ( 04 – 08 ).mp422 – 1 Example 510129.66 KBmp4Oct 24, 2018
 21 – 7 Example 4 ( 02 – 32 ).mp421 – 7 Example 46007.37 KBmp4Oct 18, 2018
 21 – 6 Example 3 ( 02 – 00 ).mp421 – 6 Example 34782.99 KBmp4Oct 18, 2018
 21 – 5 Example 2 ( 02 – 32 ).mp421 – 5 Example 26070.18 KBmp4Oct 18, 2018
 21 – 4 Example 1 ( 03 – 53 ).mp421 – 4 Example 19778.02 KBmp4Oct 18, 2018
 21 – 3 Theorem ( 07 – 13 ).mp421 – 3 Theorem18136.04 KBmp4Oct 18, 2018
 21 – 2 Remark ( 02 – 46 ).mp421 – 2 Remark6584.12 KBmp4Oct 18, 2018
 21 – 1 Order of Permutation ( 05 – 39 ).mp421 – 1 Order of Permutation14581.79 KBmp4Oct 18, 2018
 20 – 6 Example 9 ( 09 – 47 ).mp420 – 6 Example 925281.47 KBmp4Oct 18, 2018
 20 – 5 Example 8 ( 03 – 58 ).mp420 – 5 Example 89586.33 KBmp4Oct 18, 2018
 20 – 4 Example 7 ( 11 – 37 ).mp420 – 4 Example 731918.15 KBmp4Oct 18, 2018
 20 – 2 Example 6 ( 05 – 23 ).mp420 – 2 Example 613741.29 KBmp4Oct 18, 2018
 20 – 1 Example 5 ( 04 – 08 ).mp420 – 1 Example 510129.66 KBmp4Oct 18, 2018
 19 – 3 Theorem ( 09 – 01 ).mp419 – 3 Theorem24090.38 KBmp4Oct 18, 2018
 19 – 2d Example ( 02 – 53 ).mp419 – 2d Example2127.75 KBmp4Oct 18, 2018
 19 – 2c Example ( 02 -28 ).mp419 – 2c Example5965.05 KBmp4Oct 18, 2018
 19 – 2b Example ( 02 – 49 ).mp419 – 2b Example6868.46 KBmp4Oct 18, 2018
 19 – 2a Example ( 02 – 51 ).mp419 – 2a Example6869.39 KBmp4Oct 18, 2018
 19 – 2 Odd Permutation ( 01 – 55 ).mp419 – 2 Odd Permutation4837.56 KBmp4Oct 18, 2018
 19 – 1 Even Permutation ( 02 – 06 ).mp419 – 1 Even Permutation5234.33 KBmp4Oct 18, 2018
 18 – 8 Example 5 ( 04 – 43 ).mp418 – 8 Example 511858.94 KBmp4Oct 18, 2018
 18 – 7 Example 4 ( 03 – 44 ).mp418 – 7 Example 49264.89 KBmp4Oct 18, 2018
 18 – 6 Example 3 ( 02 – 28 ).mp418 – 6 Example 35880.08 KBmp4Oct 18, 2018
 18 – 5 Example 2 ( 02 – 17 ).mp418 – 5 Example 25401.88 KBmp4Oct 18, 2018
 18 – 4 Example 1 ( 01 – 50 ).mp418 – 4 Example 14364.7 KBmp4Oct 18, 2018
 18 – 3 Theorem 2 ( 05 – 06 ).mp418 – 3 Theorem 213634.95 KBmp4Oct 18, 2018
 18 – 2 Theorem 1 ( 13 – 50 ).mp418 – 2 Theorem 135781.04 KBmp4Oct 18, 2018
 18 – 1 Transposition ( 01 – 26 ).mp418 – 1 Transposition3312.1 KBmp4Oct 18, 2018
 17 – 4 Theorem 3 ( 08 – 08 ).mp417 – 4 Theorem 320390.58 KBmp4Oct 18, 2018
 17 – 3 Theorem 2 ( 08 – 06 ).mp417 – 3 Theorem 221004.27 KBmp4Oct 18, 2018
 17 – 2 Theorem 1 ( 15 – 53 ).mp417 – 2 Theorem 140603.48 KBmp4Oct 18, 2018
 17 – 1 Symmetric Group ( 04 – 09 ).mp417 – 1 Symmetric Group10288.77 KBmp4Oct 18, 2018
 15 – 6 Example 4 ( 02 – 48 ).mp415 – 6 Example 46718.91 KBmp4Oct 18, 2018
 15 – 5 Example 3 ( 02 – 52 ).mp415 – 5 Example 36932.17 KBmp4Oct 18, 2018
 15 – 4 Example 2 ( 04 – 30 ).mp415 – 4 Example 211163.5 KBmp4Oct 18, 2018
 15 – 3 Example 1 ( 05 – 50 ).mp415 – 3 Example 115027.4 KBmp4Oct 18, 2018
 15 – 2 Length of Cycles ( 04 – 18 ).mp415 – 2 Length of Cycles10415.37 KBmp4Oct 18, 2018
 15 – 1 Cyclic Permutation ( 06 – 22 ).mp415 – 1 Cyclic Permutation15202.37 KBmp4Oct 18, 2018
 14 – 6 Example 10 ( 07 – 33 ).mp414 – 6 Example 1018401.91 KBmp4Oct 18, 2018
 14 – 5 Example 9 ( 06 – 12 ).mp414 – 5 Example 916061.63 KBmp4Oct 18, 2018
 14 – 4 Example 8 ( 07 – 06 ).mp414 – 4 Example 818803.25 KBmp4Oct 18, 2018
 14 – 3 Example 7 ( 03 – 13 ).mp414 – 3 Example 77620.52 KBmp4Oct 18, 2018
 14 – 2 Example 6 ( 02 – 51 ).mp414 – 2 Example 66830.9 KBmp4Oct 18, 2018
 14 – 1 Example 5 ( 03 – 16 ).mp414 – 1 Example 57773.87 KBmp4Oct 18, 2018
 13-5 Example 4 ( 04 – 43 ).mp413-5 Example 411596.82 KBmp4Oct 18, 2018

13-4 Example 3
13-4 Example 3 ( 11 – 24 ).mp4
28976.65 KBmp4Oct 18, 2018
 13-3 Example 2 ( 05 – 18 ).mp413-3 Example 213147.63 KBmp4Oct 18, 2018
 13-2 Example 1 ( 05 – 40 ).mp413-2 Example 114140.39 KBmp4Oct 18, 2018
 13-1 Composition of Permutations ( 05 – 06 ).mp413-1 Composition of Permutations12982.24 KBmp4Oct 18, 2018
 11-6 Example 2 ( 02 – 32 ).mp411-6 Example 25737.58 KBmp4Oct 18, 2018
 11-5 Example 1 ( 02 – 37 ).mp411-5 Example 15926.84 KBmp4Oct 18, 2018
 11-4 Inverse Permutation ( 05 – 41 ).mp411-4 Inverse Permutation13931.38 KBmp4Oct 18, 2018
 11-3 Remark ( 06 – 29 ).mp411-3 Remark15854.33 KBmp4Oct 18, 2018
 11-2 Identity Permutations ( 03 – 09 ).mp411-2 Identity Permutations7725.11 KBmp4Oct 18, 2018
 11-1 Permutations ( 13 – 48 ).mp411-1 Permutations35138.14 KBmp4Oct 18, 2018
 10-6 Example 2 ( 04-07).mp410-6 Example 210599.07 KBmp4Oct 18, 2018
 10-5 Theorem 2 ( 04-24).mp410-5 Theorem 211451.66 KBmp4Oct 18, 2018
 10-4 Theorem 1 ( 04-35).mp410-4 Theorem 111676.97 KBmp4Oct 18, 2018
 10-3 Lagrange Theorem ( 13-52).mp410-3 Lagrange Theorem36970.14 KBmp4Oct 18, 2018
 10-2 Example 1 ( 06-42).mp410-2 Example 116731.11 KBmp4Oct 18, 2018
 10-1 Index of a subgroup ( 05-54 ).mp410-1 Index of a subgroup15632.42 KBmp4Oct 18, 2018
 9-7 Partition of a set A ( 02 – 16 ).mp49-7 Partition of a set A5364.57 KBmp4Oct 18, 2018
 9-6 Example 3 ( 09 – 36 ).mp49-6 Example 326069.95 KBmp4Oct 18, 2018
 9-5 Example 2 ( 03 – 43 ).mp49-5 Example 28895.77 KBmp4Oct 18, 2018
 9-4 Example 1 ( 04 – 45 ).mp49-4 Example 111663.59 KBmp4Oct 18, 2018
 9-3 Remark 2 ( 01 – 37 ).mp49-3 Remark 23914.71 KBmp4Oct 18, 2018
 9-2 Remark 1 ( 01 – 09 ).mp49-2 Remark 12743.01 KBmp4Oct 18, 2018
 9-1 Right Coset ( 01 – 43 ).mp49-1 Right Coset4194.87 KBmp4Oct 18, 2018
 9-1 Left Coset ( 02 – 54 ).mp49-1 Left Coset7028.06 KBmp4Oct 18, 2018
 8-9 Theorem 6 ( 03 – 52 ).mp48-9 Theorem 69993.83 KBmp4Oct 18, 2018
 8-8 Theorem 5 ( 07 – 16 ).mp48-8 Theorem 518847.06 KBmp4Oct 18, 2018
 8-7 Theorem 4 ( 09 – 13 ).mp48-7 Theorem 423012.07 KBmp4Oct 18, 2018
 8-6 Theorem 3 ( 12 – 34 ).mp48-6 Theorem 331661.15 KBmp4Oct 18, 2018
 8-5 Theorem 2 ( 12 – 19 ).mp48-5 Theorem 230646.28 KBmp4Oct 18, 2018
 8-4 Remark 2 ( 04 – 34 ).mp48-4 Remark 210636.37 KBmp4Oct 18, 2018
 8-4 Remark 1 ( 01 – 37 ).mp48-4 Remark 13765.02 KBmp4Oct 18, 2018
 8-3 Theorem 1 ( 03 – 05 ).mp48-3 Theorem 17743.15 KBmp4Oct 18, 2018
 8-2 Example 1 ( 06 – 02 ).mp48-2 Example 114177.41 KBmp4Oct 18, 2018
 8-1 Definition Cyclic Group ( 02 – 51 ).mp48-1 Definition Cyclic Group6948.92 KBmp4Oct 18, 2018
 7-3 Theorem 1 ( 10 – 50 ).mp47-3 Theorem 128504.48 KBmp4Oct 18, 2018
 7-2 Trivial and Non-trivial subgroups ( 02 – 49 ).mp47-2 Trivial and Non-trivial subgroups7016.22 KBmp4Oct 18, 2018
 7-1 Remark ( 01 – 54 ).mp47-1 Remark4649.12 KBmp4Oct 18, 2018
 7-1 Definition – Subgroup ( 03 – 23 ).mp47-1 Definition – Subgroup8657.87 KBmp4Oct 18, 2018
 6-8 Theorem 4 ( 12 – 39 ).mp46-8 Theorem 432455.05 KBmp4Oct 18, 2018
 6-7 Theorem 3 ( 02 – 46 ).mp46-7 Theorem 36738.52 KBmp4Oct 18, 2018
 6-6 Theorem 2 ( 05 – 42 ).mp46-6 Theorem 214007.54 KBmp4Oct 18, 2018
 6-5 Theorem 1 ( 08 – 19 ).mp46-5 Theorem 120513.94 KBmp4Oct 18, 2018
 6-4 Examples 4, 5 ( 11 – 02 ).mp46-4 Examples 4, 527778.01 KBmp4Oct 18, 2018
 6-3 Examples 1, 2, 3 ( 16 – 50 ).mp46-3 Examples 1, 2, 340993.84 KBmp4Oct 18, 2018
 6-2 Definition Non- Abelian Group ( 00 – 53 ).mp46-2 Definition Non- Abelian Group2179.13 KBmp4Oct 18, 2018
 6-1 Definition Abelian Group ( 00 – 54 ).mp46-1 Definition Abelian Group2181.28 KBmp4Oct 18, 2018
 5-6 Theorem 3 ( 09 – 46 ).mp45-6 Theorem 324912.96 KBmp4Oct 17, 2018
 5-5 Theorem 2 ( 06 – 40 ).mp45-5 Theorem 216790.61 KBmp4Oct 17, 2018
 5-4 Theorem 1 ( 11 – 36 ).mp45-4 Theorem 130800.4 KBmp4Oct 17, 2018
 5-3 Examples – Order of element ( 16 – 07 ).mp45-3 Examples – Order of element39156.31 KBmp4Oct 17, 2018
5-3 Definition order of element
5-3 Definition order of element ( 03 – 30 ).mp4
8657.58 KBmp4Oct 17, 2018
 5-2 Examples – Order of Group ( 06 – 37 ).mp45-2 Examples – Order of Group15695.08 KBmp4Oct 17, 2018
 5-1 Order of Group ( 01 – 06 ).mp45-1 Order of Group2805.98 KBmp4Oct 17, 2018
 4-6 Theorem 6 ( 04 – 20 ).mp44-6 Theorem 610385.72 KBmp4Oct 17, 2018
 4-5 Theorem 5 ( 06 – 08 ).mp44-5 Theorem 514613.79 KBmp4Oct 17, 2018
 4-4 Theorem 4 ( 04 – 23 ).mp44-4 Theorem 410353.77 KBmp4Oct 17, 2018
 4-3 Theorem 3 ( 05 – 26 ).mp44-3 Theorem 313521.93 KBmp4Oct 17, 2018
 4-2 Theorem 2 ( 02 – 30 ).mp44-2 Theorem 26048.83 KBmp4Oct 17, 2018
 4-2 Definition – Idempotent ( 01 – 08 ).mp44-2 Definition – Idempotent2600.92 KBmp4Oct 17, 2018
 4-1 Theorem 1 ( 04 – 06 ).mp44-1 Theorem 110389.73 KBmp4Oct 17, 2018
 3 – 5 Example 5 ( 10 – 27 ).mp43 – 5 Example 526938.41 KBmp4Oct 17, 2018
 3 – 4 Example 4 ( 09 – 57 ).mp43 – 4 Example 425587.81 KBmp4Oct 17, 2018
 3 – 3 Example 3 ( 09 – 19 ).mp43 – 3 Example 323181 KBmp4Oct 17, 2018
 3 – 2 Example 2 ( 07 – 50 ).mp43 – 2 Example 220073.11 KBmp4Oct 17, 2018
 3 – 1 Example 1 ( 08 – 47 ).mp43 – 1 Example 123017.19 KBmp4Oct 17, 2018
 2 – 4a Group – Definition ( 00 – 31 ).mp42 – 4a Group – Definition1489.17 KBmp4Oct 17, 2018
 2 – 4 Group – Definition ( 05 – 51 ).mp42 – 4 Group – Definition14876.25 KBmp4Oct 17, 2018
 2 – 3 Monoid – Example 5 ( 05 -43 ).mp42 – 3 Monoid – Example 514793.44 KBmp4Oct 17, 2018
 2 – 3 Monoid – Definition ( 04 – 22 ).mp42 – 3 Monoid – Definition11458.17 KBmp4Oct 17, 2018
 2 – 2 Semi-Group – Example 4 ( 09 – 30 ).mp42 – 2 Semi-Group – Example 424149.37 KBmp4Oct 17, 2018
 2 – 2 Semi-group – Example 3 ( 07 – 17 ).mp42 – 2 Semi-group – Example 318289.52 KBmp4Oct 17, 2018
 2 – 1 Groupoid Example 2 ( 02 -17 ).mp42 – 1 Groupoid Example 25402.44 KBmp4Oct 17, 2018
 2 – 1 Groupoid Example 1 ( 01-44 ).mp42 – 1 Groupoid Example 14072.81 KBmp4Oct 17, 2018
 2 – 1 Groupoid Definition ( 02 – 57 ).mp42 – 1 Groupoid Definition3972.87 KBmp4Oct 17, 2018
 1 – 9 Binary Operation Example 6 ( 02 – 50 ).mp41 – 9 Binary Operation Example 66799.83 KBmp4Oct 16, 2018
 1 – 8 Binary Operation Example 5 ( 02 – 51 ).mp41 – 8 Binary Operation Example 56740.3 KBmp4Oct 16, 2018
 1 – 7 Binary Operation Example 4 ( 03 – 02 ).mp41 – 7 Binary Operation Example 47150.36 KBmp4Oct 16, 2018
 1 – 6 Binary Operation Example 3 ( 03 – 37 ).mp41 – 6 Binary Operation Example 38667.72 KBmp4Oct 16, 2018
 1 – 5 Binary Operation Example 2 ( 02 – 26 ).mp41 – 5 Binary Operation Example 25762.32 KBmp4Oct 16, 2018
 1 – 4 Binary Operation Example 1 ( 02 – 18 ).mp41 – 4 Binary Operation Example 15492.25 KBmp4Oct 16, 2018
 1 – 3a Binary operation II ( 07 – 18 ).mp41 – 3a Binary operation II11256.33 KBmp4Oct 16, 2018
 1 – 3 Binary Operation I ( 02 – 57 ).mp41 – 3 Binary Operation I7272.24 KBmp4Oct 16, 2018
 1 – 2 Set ( 07 – 38 ).wmv1 – 2 Set11913.32 KBwmvOct 16, 2018
 1 – 1 Intro to Group Theory ( 00 – 54 ).mp41 – 1 Intro to Group Theory ( 00 – 54 )1361.76 KBmp4Oct 16, 2018
MTH501 – Linear Algebra

admin

we are internet entrepreneur, and philanthropist. we known for co-founding Vulms.org and many others

Leave a Reply

%d bloggers like this: